Evolution des systèmes de reproduction chez les escargots

Patrice DAVID
Philippe JARNE

CNRS Montpellier

Hermaphroditism

Pulmonate reproductive anatomy

A variety of possible mating systems

Outcrossing

Selfing

Mating strategies are diverse

- Darwin: Plants evolve specific strategies to control selfing rates: eg self-incompatibility, anther-stigma distance, etc
- Inbreeding depression is a major selective force against selfing

The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom

selfing rate s

inb. depression δ

Hermaphroditic animals have been less well studied

Yet they are in fact very common

Freshwater snails (Pulmonates) = good model systems

Physa acuta

Empirical issues

- -Is there variation in reproductive systems in these species ?
- To what extent can animals control their selfing rate and through what traits? Are these traits genetically variable and can they evolve?

Selfing rates: two layers of environment, one layer of genetics

Bulinus truncatus

Preferential selfer

Two hermaphroditic morphs

- Euphallics (regular)
- Aphallics (without phallus)

Both morphs can self and cross-fertilize; allosperm comes only from $\overline{\epsilon}$

Quantitative genetic variation of aphally

- Is the inheritance of aphally Mendelian?
- 40 Inbred lines (>14 gen enforced selfing) from 4 pops in Niger

VE: two genetically identical ind can have different morphs

Threshold trait: lines differ in their %A but all values are possible in [0,100]

Pop	H ²
Namaga	0,6
Mari	0,8
Boyze	0,5
Kobouri	o o

Lots of variation within most pops

Thermal responses of aphally

Plasticity: The % A increases with temperature Variation in reaction norms among lines:

How is aphally related to the selfing rate?

Many populations are obligate selfers ($100\% \land implies s=1$) All pops 0.8 < s < 1

No correlation with % A

Aphally in Bulinus truncatus

Selfing may have evolved first (e.g. through behavioral acceptance of allosperm) then driven the evolution of aphally rather than the reverse!

Physa acuta

- Preferential outcrosser s=0.1
 - Large depression δ = 0.9
 - No sexual dimorphism

- Hypothesis: uses selfing only as a last chance of reproducing when there are no mates... = reproductive assurance

The waiting time model

abundant mates: optimal age at first reproduction α

no (or rare) mates waiting time β before selfing

$$\tau = \alpha + \beta$$
 baseline time additional delay to limit selfing

Theoretical Results: optimal waiting times

 α baseline time

β additional delay when mates are absent

$$(1/m) - (1/k)$$

$$\frac{e}{m(m+e)}\frac{(2 \delta - 1)}{2(1-\delta)}$$

with mortality m

with reallocation efficiency k (reallocation from early to late reproduction)

with mortality m

with encounter rate e

/ with inbreeding depression δ

Data

 $\beta = 2$ weeks

Delayed benefits of waiting behavior in selfers

Selfers reproduce later but grow bigger and survive longer

Comparison between model and data, heritability

Survival CMR 0.009 d⁻¹ Senescence γ =4.15 Sexual maturity a=21 d Reallocation (fec): k=0.07 d⁻¹ Inbreeding depression : 0.9 Encounter rate : ? 0.1-0.9 d⁻¹

Treatment	family	<i>h</i> ²
self	p<0.001	0.41+
outcr	NS	(0)

The waiting time (β) is genetically variable

IT CAN EVOLVE

prediction

observation

Delay 13.1-18.2 d 17.2 d

Size 9.3-9.6mm 9.55 mm

The waiting behavior keeps selfing rates low

snails with $\beta=0$

snails with optimal β

The waiting behaviour reduces the realized selfing rate except at very low population densities. Empirically, we usually find s < 0.2 (4 populations)

Longer waiting times evolve in populations were selfing is more costly

Variation in WT and ID among populations

in Physa acuta

1 population (40 isolated+ 40 nonisolated individuals) different evolutionary optima of WT depending on ID

Escobar et al. 2009, Evolution

Waiting times rapidly evolve when mates become less available

Coevolution of ID and WT under reduced mating opportunity Experimental evolution lines (ca. 20 generations) S = constrained lines, 0 orC = control lines, many 1 mate, in alternation mates available at all times every other generation WT (days) ID for 0.47 juvenile survival 0,05

The beginning of a transition towards a highly selfing strategy?

Evolution of mating system between two stable states?

Number of species

Evolutionary transitions have occurred in the pulmonate snails

Inbreeding depression and waiting time coevolve with selfing rates

Conclusions

- -Hermaphroditism does not mean uniformity: hermaphroditic species contain a diversity of reproductive types, discontinuous (aphallics/euphallics) or continuous (long/short waiting times)
- these types are (partially) genetically determined and influence the opportunity for self-fertilization
- -This variation allows EVOLUTION of mating systems; this evolution provides a spectacular illustration of Darwinian principles and models

Thanks to:

Philippe Jarne

Violette Sarda

Marie-France Ostrowski

Anne Tsitrone

Juan-Sebastian Escobar

Benjamin Pélissié

Elsa Noel

CEFE-CNRS Montpellier