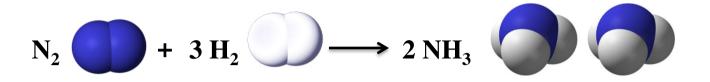


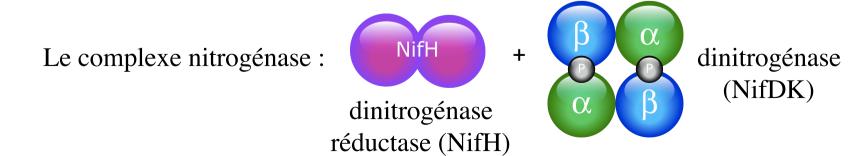
LES ENDOSYMBIOSES FIXATRICES D'AZOTE ET L'ARBRE « ARAIGNÉE »

Claudine FRANCHE

UMR Diversité Adaptation et Développement Montpellier Institut de Recherche pour le Développement

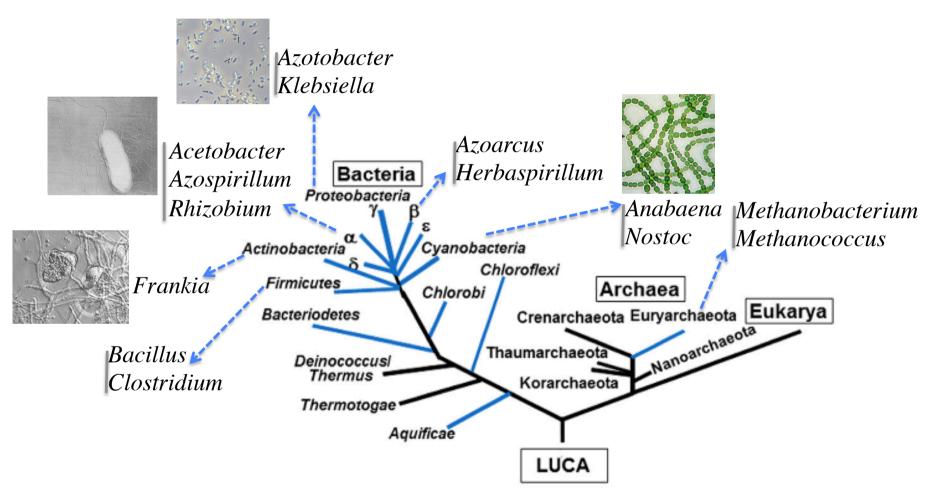


LA FIXATION D'AZOTE


Eclairs, volcans: 10 Mt/an

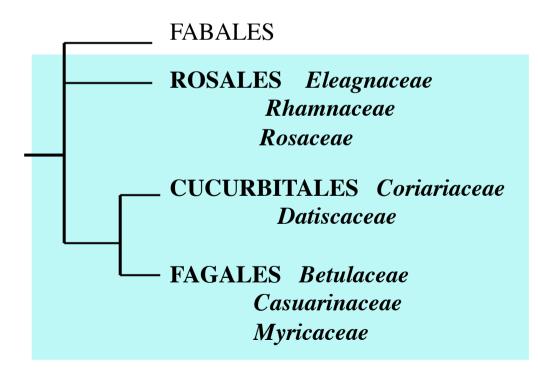
Synthèse d'engrais azotés: 80 Mt/an

Fixation biologique d'azote : 90-140 Mt/an


Fixation biologique de l'azote

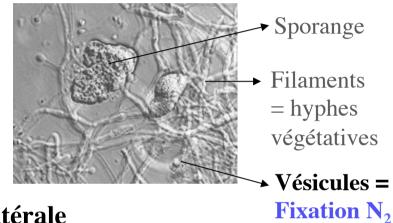
$$N_2 + 8H + 8e + 16 ATP \longrightarrow 2NH_3 + H_2 + 16 ADP + 16 Pi$$

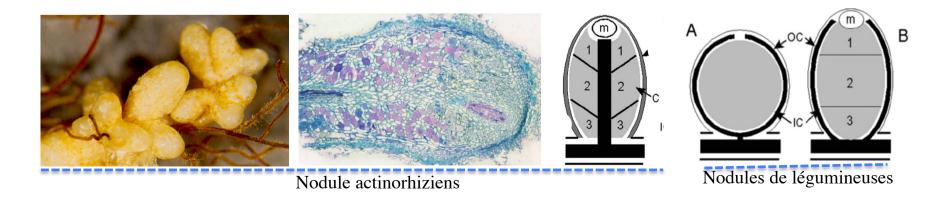
LES MICROORGANISMES FIXATEURS D'AZOTE DIVERSITÉ TAXONOMIQUE


LUCA: Last Universal Common Ancestor

LA SYMBIOSE FRANKIA-PLANTES ACTINORHIZIENNES

- * Nodules fixateurs d'azote avec l'actinobactérie Frankia
- * Arbres et arbustes (sauf *Datisca*)
- * 260 espèces, 25 genres, 8 familles d'angiospermes





UNE SYMBIOSE FIXATRICE D'AZOTE ORIGINALE

- **Diversité taxonomique des hôtes**
 - * 8 familles d'angiospermes
- * Frankia
 - ❖ Actinobactérie Gram + filamenteuse

- **❖** Un nodule apparenté à une racine latérale
 - **❖** Vascularisation centrale
 - Initiation du primordium nodulaire dans le péricycle

LA FAMILLE DES CASUARINACEAE

- Angiospermes, quatre genres, 96 espèces
- Originaires d'Australie et du sud-est de l'Asie
- Adaptés aux régions tropicales arides et semi-arides

C. glauca: pin australien, arbre « queue de cheval », arbre « araignée »

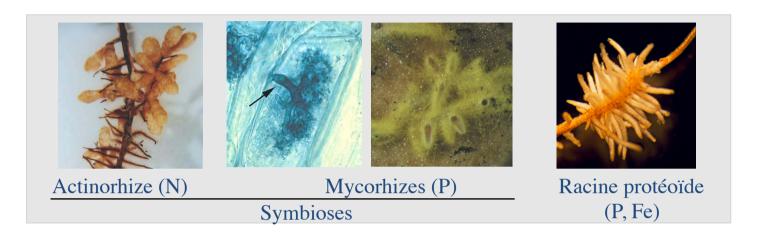
CASUARINACEAE

Propriétés

- * Adaptation à la sécheresse
- * Croissance rapide (5 m/an)
- * Croissance sur des sols pauvres
- * Tolérance salinité, métaux lourds

Utilisations

- * Réhabilitation de sols dégradés
- * Agroforesterie
- * Fixation des dunes
- * Brise vent
- * Source de bois
- * Protection des zones côtières contre les tsunamis et les typhons



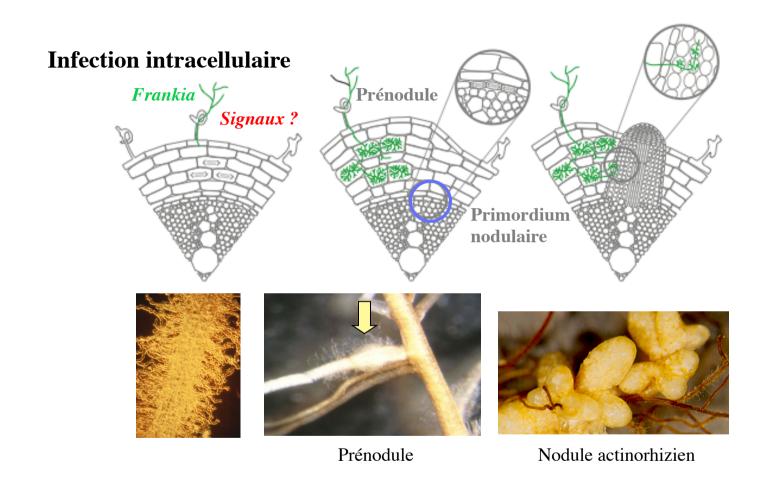
UN SYSTEME RACINAIRE ADAPTE AUX SOLS PAUVRES

Objectif général

Comprendre les bases moléculaires de cette plasticité racinaire

Nodule actinorhizien

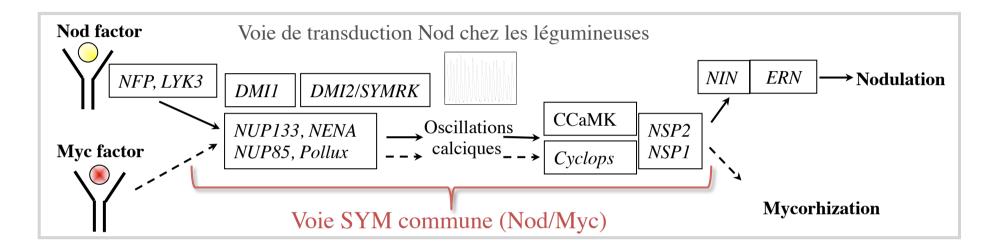
Contexte évolutif


Comprendre ce qui a prédisposé certaines plantes à fixer l'azote

Thèmes de recherche

- 1. Perception et transduction des signaux symbiotiques
- 2. Signaux symbiotiques
- 3. Adaptation du système racinaire aux stress de l'environnement (salinité)

PROCESSUS D'INFECTION

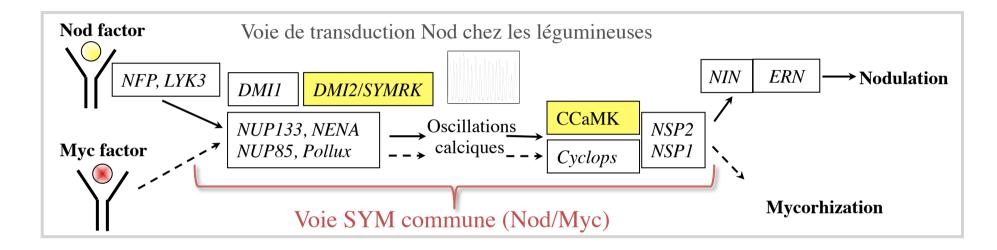


- * Approches globales: transcriptomes racines, nodules, racines endomycorhizées
- * Etudes fonctionnelles de gènes candidats : approches ARNi et étude de promoteurs dans des plantes transgéniques de *C. glauca*

TRANSDUCTION DES SIGNAUX SYMBIOTIQUES

Existe-t-il des gènes symbiotiques communs avec les légumineuses ?

- * Analyse transcriptome : mise en évidence d'une majorité de gènes communs
- * Les gènes identifiés chez C. glauca ont-ils la même fonction que chez les légumineuses?


Collaborations : C. Rosenberg, D. Barker (LIPM, Toulouse), P. Normand (U. Lyon I/CNRS, Lyon), L. Wall (U. Quilmes, Argentine), S. Mansour (U. Canal de Suez, Egypte)

Financements: ANR Blanc SESAM, ANR SYMActino, PHC IMHOTEP

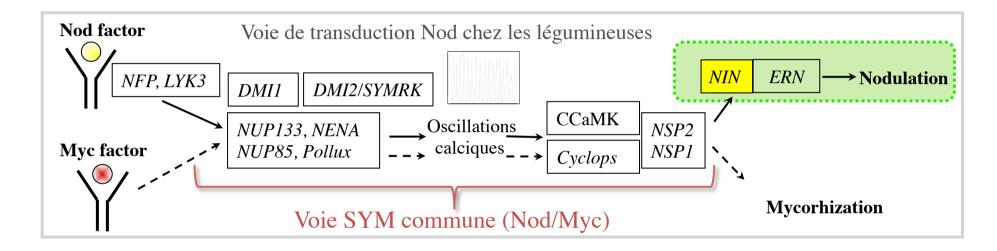
TRANSDUCTION DES SIGNAUX SYMBIOTIQUES

Existe-t-il des gènes symbiotiques communs avec les légumineuses ?

* Conservation de deux acteurs clés de la voie SYM : CgSymRK et CgCCaMK

Voie commune SYM aux endosymbioses racinaires (*Frankia*, *Rhizobium*, champignons endomycorhiziens)

PNAS (2008), Plant Physiol. (2011), PLoS ONE (2013 & 2012)


Collaborations : C. Rosenberg, D. Barker (LIPM, Toulouse), P. Normand (U. Lyon I/CNRS, Lyon), L. Wall (U. Quilmes, Argentine), S. Mansour (U. Canal de Suez, Egypte)

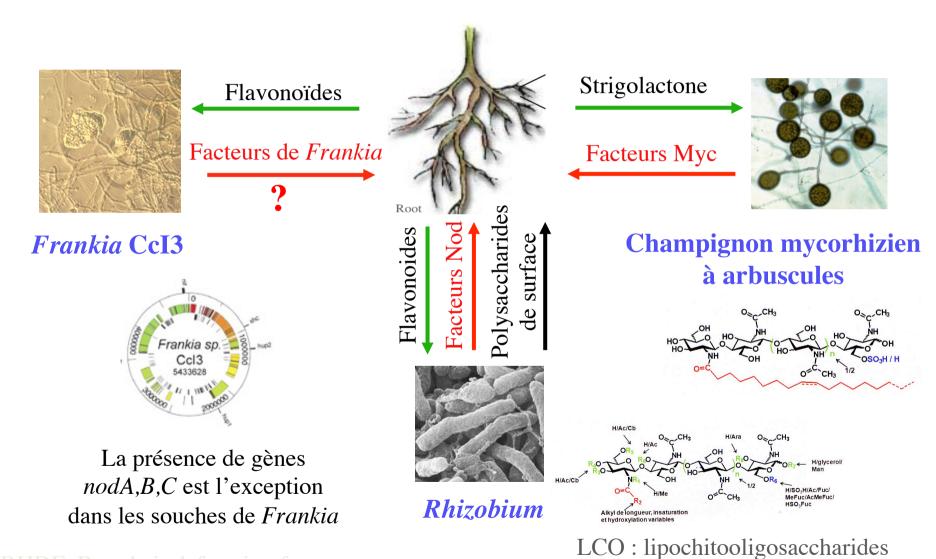
Financements: ANR Blanc SESAM, ANR SYMActino, PHC IMHOTEP

TRANSDUCTION DES SIGNAUX SYMBIOTIQUES

Existe-t-il des gènes symbiotiques communs avec les légumineuses ?

- * Conservation de gènes spécifiques de la nodulation ?
- * Conservation de la fonction symbiotique de CgNIN

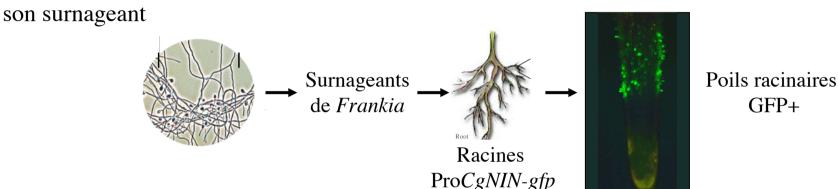
Voie Nod commune aux endosymbioses fixatrices d'azote


PLoS ONE (2013 & 2012), New Phytol. (2015)

Collaborations : C. Rosenberg, D. Barker (LIPM, Toulouse), P. Normand (U. Lyon I/CNRS, Lyon), L. Wall (U. Quilmes, Argentine), S. Mansour (U. Canal de Suez, Egypte)

Financements: ANR Blanc SESAM, ANR SYMActino, PHC IMHOTEP

MOLECULES SIGNAL DE FRANKIA


RHDF: Root hair deforming factor

LES SIGNAUX DE FRANKIA

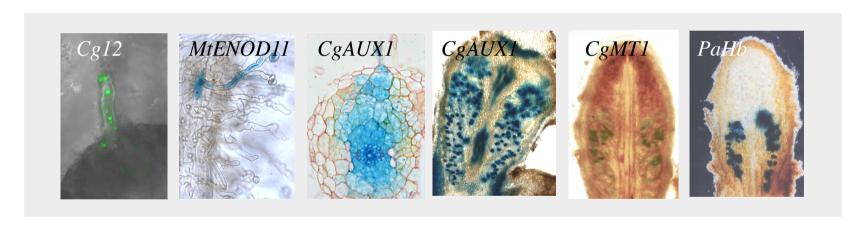
Quelle est la nature des molécules signal de Frankia?

* CgNIN : gène symbiotique précocément et spécifiquement inductible par Frankia ou

- * Mise au point d'un test biologique pour la purification des molécules signal
 - ✓ Actives à faible concentration
 - ✓MM < à 3 kDa

Molécules différentes des facteurs Nod et Myc

✓ Molécules hydrophiles


New Phytol., 2015, New Phytol., sous presse

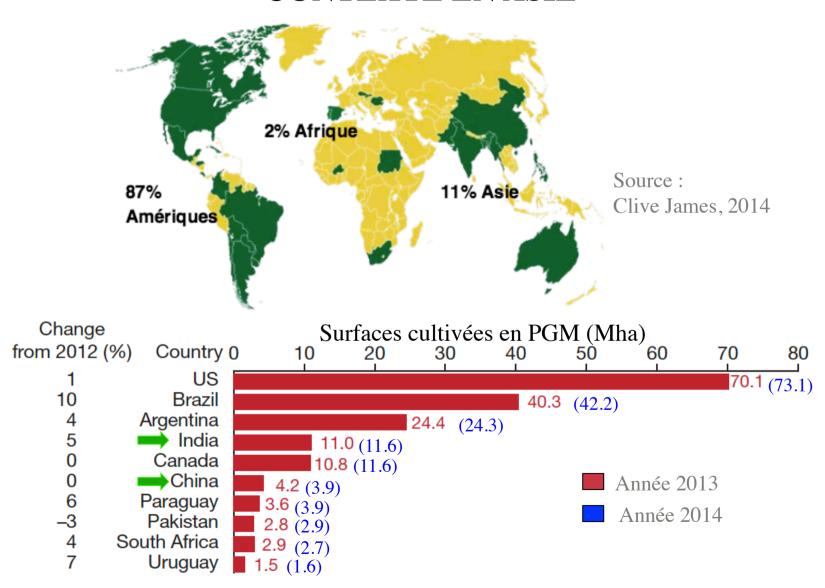
Collaborations : P. Normand (U. Lyon I/CNRS, Lyon), D. Barker (LIPM, Toulouse), D. Vallenet (CEA-Genoscope, Evry), L. Tisa (UNH, Etats Unis)

LES PLANTES TRANSGENIQUES DE CASUARINA GLAUCA

* Contributions majeures à la connaissance du processus symbiotique avec *Frankia*

* Valorisation de la technologie par des Instituts de foresterie au Sud

LES BESOINS IDENTIFIES DANS LES PLANTATIONS

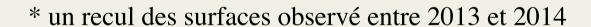


TRANSGENESE VEGETALE CONTEXTE EN ASIE

LES PGM EN INDE

Contexte général

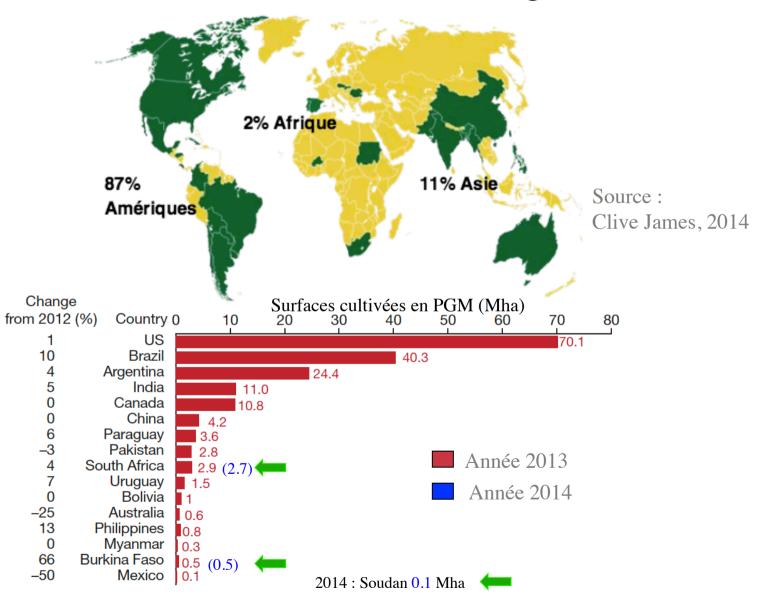
* 95% des cotonniers sont GM (11,6 millions d'ha)


- * une recherche active
 - ✓ diversité des gènes d'intérêt (stress abiotiques et biotiques, qualités nutritionnelles, phytoremédiation)
 - ✓ diversité des espèces végétales étudiées (maïs, riz, tomate, papaye, chou, arachide, aubergine, moutarde, etc.)
- * 60 permis d'essais en champ délivrés en 2014 par le « Genetic Engineering Approval Committee »
- * Certains états n'autorisent pas les essais au champ (Rajastan, Kerala,...) Source : http://igmoris.nic.in/defaulr.asp

LES PGM EN CHINE

Contexte général

- * 3,9 millions d'ha cultivés en PGM en 2014 (6ème pays)
- * Les cultures :
 - ✓ cotonnier (1996) Bt et tolérance herbicide
 - \checkmark peuplier (2003) Bt 543 ha en 2014
 - ✓ papayer (2006) 8000 ha en 2014
 - ✓ tomate et poivron



* mise en place d'un étiquetage « strict » des produits OGM dans la province du Gansu en 2014

LE CAS DE L'AFRIQUE

CONTEXTE GÉNÉRAL DES PGM EN AFRIQUE

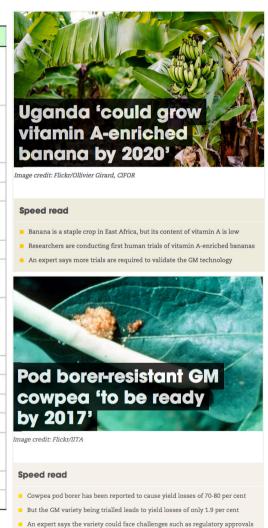
Peu de pays impliqués dans les cultures

- * Afrique du Sud
- ✓ réduction de 7% des surfaces GM en 2014
- ✓ cultures de maïs GM (2,14 Mha soit 86% des surfaces en maïs; Bt et TH)
- ✓ cultures de soja GM (552.000 ha soit 92% des surfaces en soja ; TH)
- ✓ cultures de cotonniers GM (9.000 ha soit la quasi totalité des surfaces)

*Burkina Faso

✓ cultures de cotonniers Bt (454.000 ha soit 73,8% % des surfaces en cotonniers)

* Soudan


✓ 90.000 ha de cotonniers Bt (+46%); ils représentent 80% des surfaces cultivées en cotonniers

Bt : résistance insecte ; TH : tolérance herbicide

PLANTES GM EN COURS D'ÉVALUATION AU CHAMP

Plante¤	Caractère¤	Pays¤
Bananier¤	Qualités nutritionnelles,	Egypte, Ouganda =
	résistance aux maladies et aux	
	champignons ¤	
Canne à sucre #	Amélioration de la croissance,	Egypte, Maurice, Afrique du Sud =
	contenu en sucre, résistance	
	aux virus ¤	
Cocotier I	Résistance aux virus ¤	Côte d'Ivoire, Ghana ¤
Concombre B	Résistance aux virus ¤	Egypte¤
Cotonnier ¤	Résistance aux insectes ¤	Egypte, Kenya, Malawi, Tanzanie,
		Ouganda, Zimbabwe n
Courge¤	Résistance aux virus ¤	Egypte¤
Maïs¤	Tolérance à la sécheresse, à la	Kenya, Afrique du Sud, Tanzanie,
	salinité, résistance aux insectes ¤	Ouganda, Zimbabwe n
Manioc¤	Qualités nutritionnelles,	Egypte, Ghana, Kenya, Nigeria, Afrique
	résistance aux maladies et aux	du Sud, Ouganda¤
	virus¤	
Melon ¤	Résistance aux virus ¤	Egypte¤
Niébé¤	Résistance aux insectes ¤	Burkina Faso, Ghana, Nigeria n
Sorgho ¤	Qualités nutritionnelles ¤	Burkina Faso, Kenya, Afrique du Sud ¤
Tomate¤	Résistance aux virus ¤	Egypte¤
Pomme de	Résistance aux virus, aux	Egypte, Afrique du Sud ¤
terre¤	insectes et aux champignons ¤	
Patate douce ¤	Résistance aux virus ¤	Kenya, Afrique du Sud =
Vigne¤	Résistance aux champignons ¤	Afrique du Sud ¤

CONCLUSIONS-PERSPECTIVES

La transformation génétique de *Casuarina* s'est révélée un outil majeur pour la connaissance de la symbiose actinorhizienne

Priorités de recherche

- * caractérisation des molécules signal de *Frankia* et de leurs récepteurs chez les plantes actinorhiziennes
- * analyse comparative d'un primordium racinaire et nodulaire
- D. Bogusz
- J. Bonneau
- H. Gherbi
- S. Svistoonoff
- V. Hocher
- A. Champion
- D. Moukouanga
- L. Laplaze
- S. Guyomarc'h
- M. Lucas

Collaborations

- D. Barker, LIPM, Toulouse, France
- C. Rosenberg, LIPM, Toulouse, France
- P. Normand, LEM, Lyon, France
- C. Zhong, RITF, Canton, Chine
- M. Nambiar-Veetil, IFGTB, Coimbatore, Inde
- S. Mansour, Ismailia, Egypte
- M-O Sy, Dakar, Sénégal
- L. Wall, U. Quilmes, Argentine
- L. Tisa, U. New Hampshire, USA

Affaires étrangères

