Conclusions

Hans Schnyder TECHNICAL UNIVERSITY OF MUNICH

Content

• **Contrasts** between ecotron and field settings

 Complementarity of field and ecotron approaches for understanding plant/stand and ecosystem respiration

• **Perspectives** (future needs)

Contrasts

Feature	ECOTRON	FIELD
Biological complexity	can be controlled	always high
Environmental control		
Temporal	yes	no
Spatial	yes	limited
Past/future climate	yes	no – limited
Reproducibility	yes	limited
Importance	mechanisms,	relevance,
	predictions,	develop
	tools	hypotheses

Pathways of carbon flow through ecosystems

TRUMBORE 2006 Global Change Biology

GAMNITZER et al. 2009 New Phytologist

GAMNITZER et al. 2009 *New Phytologist* SCHNYDER et al 2017 *Advances in Photosynthesis and Respiration*

QUESTIONS:

- model valid?
- Same kinetics
- in shoot and roots?
- Substrate identity?

GAMNITZER et al. 2009 New Phytologist SCHNYDER et al 2017 Advances in Photosynthesis and Respiration

Hypothesis testing in ,Physiological Ecotron'

- Steady-state
- 1 plant species (*Lolium perenne*) growing on washed sand ,soil'with nutrient solution
- no heterotrophic respiration
- Shoot and root respiration

Physiological Ecotron ¹³C/¹²C- ¹⁸O/¹⁶O-CO₂ labeling and gas exchange mesocosms

15 N

¹³C/¹²C- ¹⁸O/¹⁶O-CO₂ gas exchange mesocosms

SCHNYDER et al 2003 Plant Cell Environ

¹³CO₂ labeling strategies

Individual plants

Plant stands/ canopies

after SCHNYDER et al 2017 Advances in Photosynthesis and Respiration

Shoot and root respiration

LÖTSCHER et al. 2003 New Phytologist

¹³C tracer kinetics in shoot and root respiration of *Lolium perenne*

after LEHMEIER et al 2008 *Plant Physiology*

¹³C tracer kinetics in leaf sucrose and whole shoot respiration

SCHNYDER et al 2017 Advances in Photosynthesis and Respiration

¹³C tracer kinetics in leaf sucrose and whole shoot respiration

SCHNYDER et al 2017 Advances in Photosynthesis and Respiration

Future demands

Advance from observational/**empirical** knowledge to a more **process**-based understanding

> STORKEY et al. 2015 *Nature* Park Grass Experiment, Rothamsted, UK

Future demands

Role of Ecotrons

- Disentangle natural system (functional) complexity

- Reducing/managing/controlling biological complexity
- steady-state approaches
- Climatic drivers (CO2, T, rH, ...)
- Testing hypotheses derived from field studies
- Improving mechanistic understanding of natural systems

Testing (physiological, ecological, evolutionary) hypotheses across scales of biological organisation

- Organ
- Plant
- Plant-MO (symbiont-pathogen-heterotrophs) models
- Artificial communities
- Model ecosystems

Future demands

TOOLS

- Non-destructive/minimal-invasive monitoring techniques (imaging, gases, isotopomers, ...)
- Ecosystem analysis-computing skills/mechanistic modelling

Support

ТΠ

Technische Universität München

Tracer kinetics in leaf carbohydrates

SCHNYDER et al 2017 Advances in Photosynthesis and Respiration

CO_2 concentration and $\delta^{13}C_{CO2}$ during labeling

GAMNITZER et al. 2009 New Phytologist

Autotrophic contribution to ecosystem respiration correlated with MRT of C in respiratory substrate pool

OSTLER et al. unpublished

Lolium perenne Poa pratensis Taraxacum officinale Trifolium repens

Respiratory substrate from stores at subambient and superambient CO₂

