

Séance de l'Académie d'agriculture de France en hommage à Jean GUERN

Professeur Emérite Université Paris Sud 1936-2020

Effets multiples de l'éthylène chez les plantes

$$c = c$$

Françoise Corbineau

Professeur Sorbonne Université Académie d'agriculture de France (Section 6)

1- EXEMPLES D'EFFETS DE L'ETHYLENE SUR LA PHYSIOLOGIE DES PLANTES

Effets de l'éthylène

- Stresses(cold, dought, O₃, flooding...)
- Microbial signals
- Insects
- Temperature and oxygen

Biosynthesis

Cytokinin; JAs
Auxin
Brassinosteroids

GAs, ABA

Plant development

Germination
Vegetative growth
(triple réponse)
Flowering
Fruit ripening

Senescence

Stimulation of flower and fruit senescence
Stimulation of leaf abscission
Chlorophylle degradation
(degreening)

Stress tolerance

Hypoxia, salt, high metal, ...

Effets sur la croissance végétative

Yang et al., Molecular Plant, 2015)

Croissance à l'obscurité en présence d'éthylène à 10 ppm

Effets sur la maturation des fruits

Fruits climactériques

Pomme, Poires, Avocat, Anone, Tomate,

Implication dans les techniques de conservation en atmosphères contrôlées

2 - BIOSYNTHESE ET CATABOLISME DE L'ETHYLENE

Shang Fa Yang 1932 – 2007

Biosynthèse de l'éthylène

3 - VOIE DE SIGNALISATION

Perception (récepteurs) Transduction

- Régulation de EIN2 et EIN3 au niveau de la voie de signalisation (ubiquitination)

 Régulation des facteurs de transcription (ERF du groupe VII) par l'oxygène et la voie « N-end rule » de la protéolyse

REGULATION DES ERF DU GROUPE VII

MetAP: Met Aminopeptidase; PCO: PLANT CYS OXIDASE

ATE: Arginyl-tRNA transferase

PRT6: PROTEOLYSIS 6

Conclusions

- Spécificité chimique de l'éthylène (hydrocarbure, gaz,)

$$c = c$$

- Intervention dans de nombreux processus physiologiques
 - Morphogenèse: croissance des plantules (élongation racinaire, de l'hypocotyle et du coléoptile
 - Développement: floraison, croissance et maturation des fruits, germination et dormance des semences

Utilisation en agronomie et horticulture

- Tolérance des plantes à différents stress abiotiques et biotiques
- Rôle des processus de protéolyse (N-end Rule Pathway)
- Rôle clé dans la physiologie des plantes, en interrelation avec d'autres phytohormones (GAs, ABA, auxines, JAs, cytokinines, ...) en réseau des voies de signalisation

