Louis Pasteur, pionnier de la Biotechnologie Industrielle... et la contribution de celle-ci à la bioéconomie naissante. Prof. Jean Marie François Toulouse Biotechnology Institute & Toulouse White Biotechnology Center Toulouse Federal University, CNRS & INRA Toulouse, FRANCE center of excellence Journée Bicentenaire naissance de L.Pasteur Acad. Agric. France, 14 dec. 2022 #### OUTLINE Introduction: Biotechnology & BioEconomy - Part 1 (R)Evolution of IB over centuries and major contribution by Louis Pasteur - Part 2 Challenges to WB in the 21st Century - Part 3 An example: bioproduction of methionine - Part 4 Factors that point to a bright future for WB to BioEco - Part 5 Future trends and awareness ### **INTRODUCTION: BIOTECHNOLOGY & BIOECONOMY** Biotechnology (words originally coined by Hungarian agronomist Karoly Ereky 1919): -> application of science and technology to living organisms and their parts, products or models, to modify living or non-living materials for the production of knowledge, goods and services (OCDE) -> 10 branches **White Biotech** (industrial process using microoganisms) **Yellow Biotech Grey Biotech** (food and nutrition) (environnement, ecosytems) **BIOTECHNOLOGY** By color code **Blue Biotech** Green Biotech (processes involving agriculture) Red Biotech (medicine /pharma #### and - Brown biotech (dry, saline, desert area) - Gold biotech (bioinfo, computational) - purple biotech (ethics, philosophy) - black biotech (bioterrorism, biological weapons) ### **INTRODUCTION:** BIOTECHNOLOGY & BIOECONOMY ----- THE BIOECONOMY is economic and societal development based on RENEWABLE RESOURCES. (land, forest, sea and fresh water). ### **INTRODUCTION:** BIOTECHNOLOGY & BIOECONOMY ---- ### BIOECONOMY is part of the CIRCULAR ECONOMY https://www.naturskyddsforeningen.se/faktablad/cirkular-ekonomi/ # PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR - Primitive Biotechnology v0.0 (~ 7000 BC (Neolitic) to 19th century) - Transformation of foods into fermented foods, wine, beverages - Divine intervention - Osiris for Egyptian - Bacchus for Greeks - Small Shrine bowed to daily in Japanese factories # PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ---- ☐ Industrial Biotechnology v1.0 (19th century and promoted by L. Pasteur) - Discredit the notion of spontaneous generation - Identify aerobic vs anaerobic fermentation - characterize alcoholic fermentation - · methods to isolate and cultivate microorganisms Precept of Industrial microbiology/ Biotechnology #### PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY Toulouse Biotechnology Institute Bio & Chemical Engineering OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ### ■ Industrial Biotechnology v1.0 (19th century till 1970) Large scale fermentation -bioprocessstrong technological development early 20th century Citric acid fermentation ranks in Pfizer's Brooklyn facility, circa 1920s. https://www.acs.org/content/acs/en/education/whatisch emistry/landmarks/penicillin.html https://www.eurekalert.org/news-releases/491868 # PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ----- 737 ### ☐ Industrial Biotechnology v2.0 (70ies to 90ies) From DNA structure and coding information to genetic engineering Watson & Crick, 1954 Creation many BIO Pharma (5000 from 70^{ies} to 80^{ies} in US) # PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ----- ### Industrial Biotechnology V3.0 (from early 21th ...) Emergence Nano-Bio-Info -> new generation sequencing (NGS) # PART 1 - (R)EVOLUTION OF INDUSTRIAL BIOTECHNOLOGY OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ### ☐ Industrial Biotechnology V3.0 (from early 21th ...) Emergence Nano-Bio-Info -> omics technologies : access to all cellular components at once From Basri et al (2022) Molecular Omics, 2, 7; https://doi.org/10.1039/D2MO00060A ## PART 1 - (R)EVOLUTION OF IB/WB OVER CENTURIES AND MAJOR CONTRIBUTION BY PASTEUR ### Systems Biology or SysBio The focus is the 'whole natural' living system using -omics, mathematical and modeling tools. It aims at recapture the whole systems from its part in order to have complete understanding of its functioning □ Biotechnology v3.0(~ 2000) ### Synthetic Biology or SynBio The focus is to 'build or rebuild' (artificial) biological system endowed with a specific/focused function This is fundamentally 'an engineering' application of biological science rather an attempt to do more science A 'dream'? Resources fossile Petrol gas charcoal Non-fossile biomass ex: lignocellulose (2x10¹¹ Mtons/year) Petro-based products Bio-based products Renewable Carbon sources (raw material at 100 - 300 €/Ton) Bioproducts ### Low volume/high price products/ C-source : high margin - Titer (g/L) can be low - Rate (g/L/h) can be low - **Y**ield $Y_{P/C}$ (g/g) can be low Ex: therapeutic; cosmetic; Recombinant proteins; etc. -> highly competitive with petro-chemical derived products #### Many (recent) success stories - · Veget burger by Impossible foods - Hyalin by Zymergen - Sitgaliptin by Merck - Artemisinin (Sanofi) ### high volume/low price products/ C-source: low margin \mathbf{T} iter (g/L) must be high \mathbf{R} ate (g/L/h) must be high \mathbf{Y} ield $\mathbf{Y}_{P/C}$ (g/g) must be high Ex: commodity chemicals; detergents; biopolymers, etc -> hardly competitive versus petro-chemical derived products #### Few success stories - 1,4 butanediol (Genomatica/BASF) - 1,3 propanediol (Dupont-Genencor) ❖ 1st challenge: cell' vs biotech' objective ### Cell's objective (solving redox/ carbon balance) * 1st challenge : cell vs biotech objective -> Are natural pathways truly optimal for product formation from (bio)chemical point of view ? ---- ### 2nd challenge: carbon conservation Electron balance of substrate and product – Degree of reduction (γ) concept -> Thermodynamic yield $Y_{th} = \gamma_S / \gamma_P$ The cellular metabolism -> Stoichiometric yield Y_{st} Optimization criterion -> Pathway efficiency: E = Y_{st}/ Y_{th} (source: Dugar & Stephanopoulos, Nat. Biotech 2011; Cueto-Rojas et al., Trends Biotech, 2014) | Substrate | Product | Degree of reduction | | Stoichiometric reaction | Theor. yield
[mol/mol] | | Pathway
eff. [%] | |-----------|---------------|---------------------|----|---|---------------------------|-----------------|---------------------| | | | Ys | YP | | Y _{th} | Y _{st} | Y_{st}/Y_{th} | | Glucose | Ethanol | 24 | 12 | $C_6H_{12}O_6 \rightarrow 2 C_2H_6O + 2 CO_2$ | 2 | 2 | 100 | | Glucose | Acetate | 24 | 8 | $C_6H_{12}O_6 + 2O_2 \rightarrow 2 C_2H_4O_2 + 2 CO_2 + 2H_2O$ | 3 | 2 | 75 | | glucose | Glycolic acid | 24 | 6 | $C_6H_{12}O_6 + 3 O_2 \rightarrow 2 C_2H_4O_3 + 2 CO_2 + 2H_2O$ | 4 | 2 | 50 | The natural pathway is not always the most efficient one! ### Methionine: mass commodity in global economy #### Market of Methionine: - 1,2 to 2,0 €/kg - > 90 % for poultry industry - CAGR ~ 6% - Increase with rise of population New plant of 150 KT every 30 month (Source: Neubauer & Landecker, Lancet Planet Health, 2021, 5 e60-69) ### **Methionine:** > 95% by chemical process * 2-hydroxyl 4-methyl-thio-butanoic acid ### Main technical and economical challenges # **KEY TECHNOLOGICAL PERFORMANCES FOR** an economically viable Biotechnological process of 'bulky' or commodity compounds Key indices or TRY - Product Titers > 100 g/l - Production Rate > 2 g/h/l - Product Yield > 50 % (g/g carbon source) This is the case for many amino acids (glutamate, threonine, lysine..) (through metabolic engineering of the natural pathway) BUT NOT METHIONINE Why? (as well as for many bio-based molecules!) # White Biotechnology center of excellence # PART 3 - EXAMPLE: BIOPRODUCTION OF METHIONINE: **HOW** AND WHY ### Biosourced production of methionine: challenges 1) Methionine synthesis involved 3 interconnected pathways (3 intermediates) - C4-carbon skeleton (aspartate -homoserine path) - Sulfur group (sulfate ions) - Methyl group (serine to glycine through CH3-THF and/or glycine cleavage system) - 2) Metabolic pathway highly costly in ATP and reduced cofactor - + Metabolic pathway highly complex and regulated - -> Maximal yield from natural pathway < 0.5 g/g glucose - 4) Low solubility of methionine in water (< 55 g/l at 25°C) ------ ### Biosourced production of methionine: current process in development Methionine production by mixed process #### **DHB**: successful access through three synthetic pathways **Patents** (CH2O)n (sugars) WO 2012/0563181 WO 2013/160762 WO 2014/009435 PĚP L-Glu Black arrows= natural pathway NADH 2-KG Oxaloacetate Red arrows= synthetic pathway NAD+ aspC (mdh) malate ATP, CoA L-Aspartate ATP thrA pathway ADR acetyl-coA pathway **IysC** pathway MK AMP, Pi MCS metL **ADP** Malyl-Pi -glyoxylate Malyl-CoA Aspartyl-Pi (mls) **NADPH MCR** NAD(P)H **MSDH** NAD(P)H Malyl-coA asd homoserine **Malyl-Pi** P_i, NAD(P)+ P_i, NADP+ NAD(P)+, coA Malyl-semialdehyde Aspartyl-semialdehyde NAD(P)H NAD(P)H thrA **MSAR** metL NAD(P)+ NAD(P)+ L-Glu 2-KG NAD(P)H NAD(P)+ Walter et al., Nat Comm., 2017 L-Homoserine -2-keto-4-hydroxybutyric acid 2, 4-dihydroxybutyric acid Walter et al., Metab Eng. 2017 TA (OHB) **OHBR** (DHB) Frazao et al., Biochem J., 2028 ### A: Enzyme engineering for Malyl-Pi pathway #### **Homoserine natural pathway** ### Strains performance (DBTL cycle) ### **B:** Strains engineering and performance Reach today: 'prototype/demonstrator' (TRL7) ### **Factors not favouring bioproduction of methionine** 1- The cost of fossil resource is still 'low' - 2- D or L-methionine or D or L- hydroxyl methionine are all nutritionally valuable in poultry - -> chemical attractiveness - 3- Pure petro-chemical process is highly mature - -> TEA highly competitive - -> LCA competitive to biotechnological production on actual amino acids (lysine, glutamate) ### **Factors favouring production of biosourced methionine** 1- fossil resource is steadily decreasing and thus price shall raise - 2- Petro chemical process is highly hazardous - -> Seveso High - -> use HCN, acrolein, solvents, high acidic conditions - 3- plant biotech is 'smaller' and "smatter" - -> build "locally' taking into account environmental and societal factors - local carbon resource (straw, molasses, sugar canes, wood) - local human activities - => reduce transport (reduced greenhouse effect) ### 1st: Instruments to de-risk and innovate in IB ### 'Technology Readiness Level' ou TRL #### 1st: Instruments to de-risk and innovate in IB ### **Technology Readiness Level ou TRL** - Idea or basic principles - 2. Technology concept formulated - 3. Experimental proof of concept (-> Patent) - 4. Technology validated in lab ### Valley of Death! - 5. Technology validated in a relevant environment - 6. Technology demonstrated in an industrial context - 7. System prototype demonstration - System complete et qualified - 9. Actual system proven operational #### 1st: Instruments to de-risk and innovate in IB ### how to get out of the valley of death? - Start-ups in Biotech - concept of innovation and de-risking - Several means for fund raising ### ex: Toulouse White Biotechnology (TWB) - 3 missions - accelerate the development of industrial biotech - facilitate the interface between public research and industry - promote the development of sustainable production methods - > Require strong Public financial support for de-risking - ANR (TRL2-5) - PIA-BPI/ADEME (TRL 5-7) - France Biotech 2030 (TRL 5-8) ------ # 2^{nd:} Techno-scientific (business model): the bio-based product is a platform molecule additionally should be easier to produce biologically than chemically and should reduces significantly GWP and CO₂ emission (Life cycle assessment) ### 3th: socio- economic: Size reduction and Sharing #### BIG chemical Industries that do all in all #### Smaller and 'local' Biotech plant - Can be installed where there are "resources" - Will reduce global pollution - Will reduce GWP and CO2 (transportation) - Will promote local 'reindustrialization' - Will increase diversification / new jobs #### PART 5 - FUTURE TRENDS & AWARENESS - New microbial chasses must be developed to use all type of carbon sources - ❖ CO₂, plastic waste as alternative carbon source - Fermentation process must be realized with less water - Acceleration of innovation and development by integration of IA into Biology - Need 'long-tail public funding over many years to de-risk the field - Public acceptance of 'Synthetic Biology Organism' (SBO) - Increase consumer awareness of global sustainability from bio-based solutions, even if they will be less 'economically' attractive ### **ACKNOWLEDGMENTS** ### Thomas Walter Helene Cordier Debora Trichez Romain Irague Yohan Malbert Clementine Dressaire #### Ceren Alkim Daniele Farias Julie Fredonnet Thibault Malfoy Manon Barthe Marine Deshors Audrey Baylac Florence Calvayrac Luce Lozano-Huguet Amelie Vax Yannick Malbert Lucille Spina Helene Serrano Maia Hernandez Clea lachaux Claudio Frazao #### Collaborators **Technological Platforms** ### Financial support ### Institutional support